Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cell Rep ; 42(6): 112532, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2323919

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have seriously attacked the antibody barrier established by natural infection and/or vaccination, especially the recently emerged BQ.1.1 and XBB.1. However, crucial mechanisms underlying the virus escape and the broad neutralization remain elusive. Here, we present a panoramic analysis of broadly neutralizing activity and binding epitopes of 75 monoclonal antibodies isolated from prototype inactivated vaccinees. Nearly all neutralizing antibodies (nAbs) partly or totally lose their neutralization against BQ.1.1 and XBB.1. We report a broad nAb, VacBB-551, that effectively neutralizes all tested subvariants including BA.2.75, BQ.1.1, and XBB.1. We determine the cryoelectron microscopy (cryo-EM) structure of VacBB-551 complexed with the BA.2 spike and perform detailed functional verification to reveal the molecular basis of N460K and F486V/S mutations mediating the partial escape of BA.2.75, BQ.1.1, and XBB.1 from the neutralization of VacBB-551. Overall, BQ.1.1 and XBB.1 raised the alarm over SARS-CoV-2 evolution with unprecedented antibody evasion from broad nAbs elicited by prototype vaccination.

2.
Acta Naturae ; 15(1): 81-86, 2023.
Article in English | MEDLINE | ID: covidwho-2318683

ABSTRACT

The new coronavirus infection COVID-19 is an acute viral disease that affects primarily the upper respiratory tract. The etiological agent of COVID-19 is the SARS-CoV-2 RNA virus (Coronaviridae family, Betacoronavirus genus, Sarbecovirus subgenus). We have developed a high-affinity human monoclonal antibody, called C6D7-RBD, which is specific to the S protein receptor-binding domain (RBD) from the SARS-CoV-2 Wuhan-Hu-1 strain and exhibits virus-neutralizing activity in a test with recombinant antigens: angiotensin-converting enzyme 2 (ACE2) and RBD.

3.
J Virol ; 97(6): e0028623, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-2315599

ABSTRACT

We identified neutralizing monoclonal antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants (including Omicron variants BA.5 and BA.2.75) from individuals who received two doses of mRNA vaccination after they had been infected with the D614G virus. We named them MO1, MO2, and MO3. Among them, MO1 showed particularly high neutralizing activity against authentic variants: D614G, Delta, BA.1, BA.1.1, BA.2, BA.2.75, and BA.5. Furthermore, MO1 suppressed BA.5 infection in hamsters. A structural analysis revealed that MO1 binds to the conserved epitope of seven variants, including Omicron variants BA.5 and BA.2.75, in the receptor-binding domain of the spike protein. MO1 targets an epitope conserved among Omicron variants BA.1, BA.2, and BA.5 in a unique binding mode. Our findings confirm that D614G-derived vaccination can induce neutralizing antibodies that recognize the epitopes conserved among the SARS-CoV-2 variants. IMPORTANCE Omicron variants of SARS-CoV-2 acquired escape ability from host immunity and authorized antibody therapeutics and thereby have been spreading worldwide. We reported that patients infected with an early SARS-CoV-2 variant, D614G, and who received subsequent two-dose mRNA vaccination have high neutralizing antibody titer against Omicron lineages. It was speculated that the patients have neutralizing antibodies broadly effective against SARS-CoV-2 variants by targeting common epitopes. Here, we explored human monoclonal antibodies from B cells of the patients. One of the monoclonal antibodies, named MO1, showed high potency against broad SARS-CoV-2 variants including BA.2.75 and BA.5 variants. The results prove that monoclonal antibodies that have common neutralizing epitopes among several Omicrons were produced in patients infected with D614G and who received mRNA vaccination.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Epitopes/genetics , RNA, Messenger , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
Pathogens ; 10(6)2021 May 31.
Article in English | MEDLINE | ID: covidwho-2265413

ABSTRACT

In this study, we evaluated 62 sow sera samples from PED-vaccinated sows to compare the serum neutralizing test (SNT) and enzyme-linked immunosorbent assay (ELISA). We performed protein ELISA (pELISA) using fragments of spike proteins S1, S2, S3 and entire nucleocapsid proteins, and found a correlation between the SNT and ELISA in PEDV-vaccinated sera. Sera with higher neutralizing activity showed higher titers of IgG. In the antibody profiling, the neutralizing activities are correlated with the levels of the spike antibody, especially the S3 region. We confirmed that the carboxy-terminal region, including the endodomain of the S protein, induced stronger neutralizing activity than the ectodomain. This region of the S protein could be useful for evaluating PED vaccine efficacy, and it is a strong neutralizing epitope of PEDV. The S3 protein could be useful for evaluating PED vaccine efficacy, and it is a strong neutralizing epitope of PEDV.

5.
Front Immunol ; 14: 1066730, 2023.
Article in English | MEDLINE | ID: covidwho-2268658

ABSTRACT

The emergence of SARS-CoV-2 variants stresses the continued need for broad-spectrum therapeutic antibodies. Several therapeutic monoclonal antibodies or cocktails have been introduced for clinical use. However, unremitting emerging SARS-CoV-2 variants showed reduced neutralizing efficacy by vaccine induced polyclonal antibodies or therapeutic monoclonal antibodies. In our study, polyclonal antibodies and F(ab')2 fragments with strong affinity produced after equine immunization with RBD proteins produced strong affinity. Notably, specific equine IgG and F(ab')2 have broad and high neutralizing activity against parental virus, all SARS-CoV-2 variants of concern (VOCs), including B.1.1,7, B.1.351, B.1.617.2, P.1, B.1.1.529 and BA.2, and all variants of interest (VOIs) including B.1.429, P.2, B.1.525, P.3, B.1.526, B.1.617.1, C.37 and B.1.621. Although some variants weaken the neutralizing ability of equine IgG and F(ab')2 fragments, they still exhibited superior neutralization ability against mutants compared to some reported monoclonal antibodies. Furthermore, we tested the pre-exposure and post-exposure protective efficacy of the equine immunoglobulin IgG and F(ab')2 fragments in lethal mouse and susceptible golden hamster models. Equine immunoglobulin IgG and F(ab')2 fragments effectively neutralized SARS-CoV-2 in vitro, fully protected BALB/c mice from the lethal challenge, and reduced golden hamster's lung pathological change. Therefore, equine pAbs are an adequate, broad coverage, affordable and scalable potential clinical immunotherapy for COVID-19, particularly for SARS-CoV-2 VOCs or VOIs.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Horses , Humans , Mice , Rodentia , Mesocricetus , Antibodies, Monoclonal , Broadly Neutralizing Antibodies , Immunoglobulin G , Mice, Inbred BALB C
7.
J Med Virol ; 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2230216

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants have caused hundreds of thousands of deaths and shown serious social influence worldwide. Jilin Province, China, experienced the first wave of the outbreak from December 2020 to February 2021. Here, we analysed the genomic characteristics of the SARS-CoV-2 outbreak in Jilin province using a phylogeographic tree and found that clinical isolates belonged to the B.1 lineage, which was considered to be the ancestral lineage. Several dominant SARS-CoV-2 specific linear B cell epitopes that reacted with the convalescent sera were also analysed and identified using a peptide microarray composed of S, M, and E proteins. Moreover, the serum of convalescent patients infected with SARS-CoV-2 showed neutralising activity against four widely spreading SARS-CoV-2 variants; however, significant differences were observed in neutralising activities against different SARS-CoV-2 variants. These data provide important information on genomic characteristics, linear epitopes, and neutralising activity of SARS-CoV-2 outbreak in Jilin Province, China, which may aid in understanding disease patterns and regional aspects of the pandemic. This article is protected by copyright. All rights reserved.

8.
Front Pharmacol ; 13: 983505, 2022.
Article in English | MEDLINE | ID: covidwho-2224854

ABSTRACT

Background: BRII-196 and BRII-198 are two anti-SARS-CoV-2 monoclonal neutralizing antibodies as a cocktail therapy for treating COVID-19 with a modified Fc region that extends half-life. Methods: Safety, tolerability, pharmacokinetics, and immunogenicity of BRII-196 and BRII-198 were investigated in first-in-human, placebo-controlled, single ascending dose phase 1 studies in healthy adults. 44 participants received a single intravenous infusion of single BRII-196 or BRII-198 up to 3,000 mg, or BRII-196 and BRII-198 combination up to 1500/1500 mg, or placebo and were followed up for 180 days. Primary endpoints were incidence of adverse events (AEs) and changes from pre-dose baseline in clinical assessments. Secondary endpoints included pharmacokinetics profiles of BRII-196/BRII-198 and detection of anti-drug antibodies (ADAs). Plasma neutralization activities against SARS-CoV-2 Delta live virus in comparison to post-vaccination plasma were evaluated as exploratory endpoints. Results: All infusions were well-tolerated without systemic or local infusion reactions, dose-limiting AEs, serious AEs, or deaths. Most treatment-emergent AEs were isolated asymptomatic laboratory abnormalities of grade 1-2 in severity. BRII-196 and BRII-198 displayed pharmacokinetics characteristic of Fc-engineered human IgG1 with mean terminal half-lives of 44.6-48.6 days and 72.2-83.0 days, respectively, with no evidence of interaction or significant anti-drug antibody development. Neutralizing activities against the live virus of the SARS-CoV-2 Delta variant were maintained in plasma samples taken on day 180 post-infusion. Conclusion: BRII-196 and BRII-198 are safe, well-tolerated, and suitable therapeutic or prophylactic options for SARS-CoV-2 infection. Clinical Trial Registration: ClinicalTrials.gov under identifiers NCT04479631, NCT04479644, and NCT04691180.

9.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116049

ABSTRACT

The BNT162b2 vaccine induces neutralizing activity (NA) in serum, but no data are available on whether a third-dose activates specific-immunity within the oral mucosa, representing the primary route of viral-entry. To carefully address this issue, we investigated if such immunity is boosted by SARS-CoV-2-infection; how long it is maintained over-time; and if it protects against the SARS-CoV-2 lineage B.1 (EU) and the emerging Delta and Omicron variants. NA was measured in plasma and saliva samples from: uninfected SARS-CoV-2-Vaccinated (SV), subjects infected prior to vaccination (SIV), and subjects who were infected after the second (SIV2) or the third (SIV3) vaccine dose. Samples were collected immediately before (T0), 15 days (T1), and 90 days (T2) post third-dose administration (SV and SIV), or 15 days post-infection (SIV2 and SIV3). In all the enrolled groups, NA in plasma and saliva: (i) was higher against EU compared to the other variants at all time-points (SV: T0 and T1, EU vs. both Delta and Omicron p < 0.001; T2 p < 0.01) (SIV: T0, EU vs. Delta p < 0.05; EU vs. Omi p < 0.01; T1 and T2 EU vs. Delta p < 0.01; EU vs. Omi p < 0.001); (ii) was boosted by the administration of the third dose; iii) declined over-time, albeit being detectable in almost all subjects at T2. The monitoring of NA over time will be important in clarifying if different NA levels may influence either acquisition or course of infection to properly plan the timing of a fourth vaccine dose administration.


Subject(s)
COVID-19 , Vaccines , Humans , BNT162 Vaccine , Saliva , COVID-19/prevention & control , SARS-CoV-2
10.
Acta Naturae ; 14(3): 109-119, 2022.
Article in English | MEDLINE | ID: covidwho-2111615

ABSTRACT

Monitoring of the level of the virus-neutralizing activity of serum immunoglobulins ensures that one can reliably assess the effectiveness of any protection against the SARS-CoV-2 infection. For SARS-CoV-2, the RBD-ACE2 neutralizing activity of sera is almost equivalent to the virus-neutralizing activity of their antibodies and can be used to assess the level of SARS-CoV-2 neutralizing antibodies. We are proposing an ELISA platform for performing a quantitative analysis of SARS-CoV-2 RBD-neutralizing antibodies, as an alternative to the monitoring of the virus-neutralizing activity using pseudovirus or "live" virus assays. The advantage of the developed platform is that it can be adapted to newly emerging virus variants in a very short time (1-2 weeks) and, thereby, provide quantitative data on the activity of SARS-CoV-2 RBD-neutralizing antibodies. The developed platform can be used to (1) study herd immunity to SARS-CoV-2, (2) monitor the effectiveness of the vaccination drive (revaccination) in a population, and (3) select potential donors of immune plasma. The protective properties of the humoral immune response in hospitalized patients and outpatients, as well as after prophylaxis with the two most popular SARS-CoV-2 vaccines in Russia, were studied in detail using this platform. The highest RBD-neutralizing activity was observed in the group of hospitalized patients. The protective effect in the group of individuals vaccinated with Gam-COVID-Vac vaccine was 25% higher than that in outpatients and almost four times higher than that in individuals vaccinated with the CoviVac vaccine.

11.
Front Immunol ; 13: 1042406, 2022.
Article in English | MEDLINE | ID: covidwho-2099154

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding domain antigens of SARS-CoV-2. Additionally, the re-infections with different LPH-CoVs occurred frequently in children and tended to increase the cross-reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven samples with a median age of 1.4 years old had detected neutralizing activity for the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven samples contained anti-S IgG antibodies against HCoV-OC43. Together, these data suggest that children's pre-existing antibodies to LPH-CoVs have limited cross-reactive neutralizing antibodies against SRAS-CoV-2.


Subject(s)
COVID-19 , Coronaviridae , Child , Humans , Infant , SARS-CoV-2 , Immunity, Humoral , Seroepidemiologic Studies , Antibodies, Viral , Immunoglobulin G
12.
J Virol ; 96(17): e0011822, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992935

ABSTRACT

SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD's receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes , Glycosylation , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Subunit/immunology
13.
Mediterr J Hematol Infect Dis ; 14(1): e2022050, 2022.
Article in English | MEDLINE | ID: covidwho-1988182

ABSTRACT

Background and Objective: In patients with mild-to-moderate COVID-19 and at high risk of progression, casirivimab/imdevimab and bamlanivimab/etesivimab were utilized in Umbria from late April to November 2021. This period was characterized by an initial prevalence of alpha (B1.1.1.7) and its progressive substitution with the delta variant (B1.617.2). Many delta infections occurred in patients already recently vaccinated.Our study aimed to observe the clinical outcome of patients treated with mAbs associations in a subgroup in which viral isolation was obtained, the pre and post-infusion neutralizing antibody activity against their viral isolate. Methods: In this retrospective observational study, the clinical outcome before and 30 days after infusion, the baseline neutralizing activity of sera against their viral isolate, and the titers of neutralizing antibodies (NAbTs) one-hour post-infusion relative to the type of mAbs associations were evaluated. Results: Better efficacy of the mAbs combinations relative to monotherapy regarding global hospitalization (p = 0.021) and 30 days symptoms (p<0.001) were seen. Infections after vaccination mostly occurred in the absence of neutralizing antibody titers (NAbT). SARS-CoV-2 delta variants were isolated within 2-4 months from vaccinations without NAbTs, or in the presence of high specific neutralizing activity after 5-6 months. NAbTs were higher after casirivimab/imdevimab infusion (p=0.001). Conclusions: Alpha infections occurred prevalently in unvaccinated patients or after 5-6 months, while delta infections prevailed in vaccinated ones. A poor neutralizing activity in most of these patients was seen. A higher NAbT after infusion of casirivimab/imdevimab was observed.

14.
Front Cell Infect Microbiol ; 12: 948014, 2022.
Article in English | MEDLINE | ID: covidwho-1963409

ABSTRACT

With the emergence and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants, escaping vaccine-induced immunity is a concern. Three vaccination schedules, homologous or heterologous, have been initially applied due to an insufficient supply of vaccines in Korea. We investigated neutralizing activities against Omicron and Delta variants in each schedule. Three schedules using three doses of the BNT162b2 (BNT) or the ChAdOx1 (ChAd) vaccines include ChAd-ChAd-BNT, ChAd-BNT-BNT, and BNT-BNT-BNT. Neutralizing activities were evaluated using plaque-reduction neutralization test (PRNT) against wild type (WT) SARS-CoV-2, Delta variant, and Omicron variant. A total of 170 sera from 75 participants were tested, and the baseline characteristics of participants were not significantly different between groups. After the 2nd vaccine dose, geometric mean titers of PRNT ND50 against WT, Delta, and Omicron were highest after ChAd-BNT vaccination (2,463, 1,097, and 107) followed by BNT-BNT (2,364, 674, and 38) and ChAd-ChAd (449, 163, and 25). After the 3rd dose of BNT, the increase of PRNT ND50 against WT, Delta, and Omicron was most robust in ChAd-ChAd-BNT (4,632, 988, and 260), while the BNT-BNT-BNT group showed the most augmented neutralizing activity against Delta and Omicron variants (2,315 and 628). ChAd-BNT-BNT showed a slight increase of PRNT ND50 against WT, Delta, and Omicron (2,757, 1,279, and 230) compared to the 2nd dose. The results suggest that a 3rd BNT booster dose induced strengthened neutralizing activity against Delta and Omicron variants. The waning of cross-reactive neutralizing antibodies after the 3rd dose and the need for additional boosting should be further investigated.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , SARS-CoV-2/genetics , Vaccination
15.
J Biol Rhythms ; 37(5): 562-566, 2022 10.
Article in English | MEDLINE | ID: covidwho-1902252

ABSTRACT

To examine whether immunization time affects the immune responses elicited by the BNT162b2 COVID-19 vaccine, we investigated the possible association between total SARS-CoV-2 spike protein receptor binding domain (TAbs-RBD) and neutralizing (NAbs-RBD) antibodies with vaccination time. A cohort of 468 healthcare workers (mean age [±SD]: 48 [±13] years), were included in the study. One month after the second dose, healthcare workers who were vaccinated between 1500-2200 h had higher TAbs-RBD compared to 0700-1100 h and 1100-1500 h (p = 0.006). One month after the third dose, healthcare workers who were vaccinated between 0700-1100 h and 1500-2200 h had significantly higher TAbs-RBD compared to 1100-1500 h (p = 0.034). However, no association of NAbs-RBD with vaccination time was detected after each of the 3 doses (p > 0.4). Despite the possible effect of BNT162b2 vaccination time in TAbs-RBD levels, possibly due to rhythmic expression of clock genes, neutralizing activity was not associated with vaccination time and, therefore, further investigation is required.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Circadian Rhythm , Adult , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , Humans , Mice, Inbred BALB C , Middle Aged , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
16.
Viruses ; 14(6)2022 06 07.
Article in English | MEDLINE | ID: covidwho-1884384

ABSTRACT

(1) Background: Our aim is the evaluation of the neutralizing activity of BNT162b2 mRNA vaccine-induced antibodies in different in vitro cellular models, as this still represents one of the surrogates of protection against SARS-CoV-2 viral variants. (2) Methods: The entry mechanisms of SARS-CoV-2 in three cell lines (Vero E6, Vero E6/TMPRSS2 and Calu-3) were evaluated with both pseudoviruses and whole virus particles. The neutralizing capability of sera collected from vaccinated subjects was characterized through cytopathic effects and Real-Time RT PCR. (3) Results: In contrast to Vero E6 and Vero E6/TMPRSS2, Calu-3 allowed the evaluation of both viral entry mechanisms, resembling what occurs during natural infection. The choice of an appropriate cellular model can decisively influence the determination of the neutralizing activity of antibodies against SARS-CoV-2 variants. Indeed, the lack of correlation between neutralizing data in Calu-3 and Vero E6 demonstrated that testing the antibody inhibitory activity by using a single cell model possibly results in an inaccurate characterization. (4) Conclusions: Cellular systems allowing only one of the two viral entry pathways may not fully reflect the neutralizing activity of vaccine-induced antibodies moving increasingly further away from possible correlates of protection from SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Chlorocebus aethiops , Humans , Vaccines, Synthetic , Vero Cells , mRNA Vaccines
17.
J Clin Lab Anal ; 36(7): e24545, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1881421

ABSTRACT

INTRODUCTION: Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic even after vaccination. We aimed to identify immunological heterogeneity over time in vaccinated healthcare workers using neutralization antibodies and neutralizing activity tests. METHODS: Serum samples were collected from 214 healthcare workers before vaccination (pre) and on days 22, 90, and 180 after receiving the first dose of BNT162b2 vaccine (day 0). Neutralization antibody (NAb, SARS-CoV-2 S-RBD IgM/IgG) titers and two kinds of surrogate virus neutralization tests (sVNTs) were analyzed (UMIN000043851). RESULTS: The NAb (SARS-CoV-2 S-RBD IgG) titer peaked on day 90 after vaccination (30,808.0 µg/ml ± 35,211; p < 0.0001) and declined on day 180 (11,678.0 µg/ml ± 33,770.0; p < 0.0001). The neutralizing activity also peaked on day 90 and declined with larger individual differences than those of IgG titer on day 180 (88.9% ± 15.0%, 64.8% ± 23.7%, p < 0.0001). We also found that the results of POCT-sVNT (immunochromatography) were highly correlated with those of conventional sVNT (ELISA). CONCLUSIONS: Neutralizing activity is the gold standard for vaccine efficacy evaluation. Our results using conventional sVNT showed large individual differences in neutralizing activity reduction on day 180 (64.8% ± 23.7%), suggesting an association with the difference in vaccine efficacy. POCT-sVNT is rapid and user-friendly; it might be used for triage in homes, isolation facilities, and event venues without restrictions on the medical testing environment.


Subject(s)
COVID-19 , Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Immunoglobulin G , Neutralization Tests , Point-of-Care Systems , SARS-CoV-2
18.
Med Microbiol Immunol ; 211(2-3): 79-103, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1844367

ABSTRACT

An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.


Subject(s)
COVID-19 , Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccine Efficacy
19.
Vaccines (Basel) ; 10(5)2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1820447

ABSTRACT

Several COVID-19 platforms have been licensed across the world thus far, but vaccine platform research that can lead to effective antigen delivery is still ongoing. Here, we constructed AdCLD-CoV19 that could modulate humoral immunity by harboring SARS-CoV-2 antigens onto a chimeric adenovirus 5/35 platform that was effective in cellular immunity. By replacing the S1/S2 furin cleavage sequence of the SARS-CoV-2 Spike (S) protein mounted on AdCLD-CoV19 with the linker sequence, high antigen expression was confirmed in various cell lines. The high levels of antigen expression contributed to antigen-specific antibody activity in mice and non-human primates (NHPs) with a single vaccination of AdCLD-CoV19. Furthermore, the adenovirus-induced Th1 immune response was specifically raised for the S protein, and these immune responses protected the NHP against live viruses. While AdCLD-CoV19 maintained neutralizing antibody activity against various SARS-CoV-2 variants, it was reduced to single vaccination for ß and ο variants, and the reduced neutralizing antibody activity was restored with booster shots. Hence, AdCLD-CoV19 can prevent SARS-CoV-2 with a single vaccination, and the new vaccine administration strategy that responds to various variants can maintain the efficacy of the vaccine.

20.
Antiviral Res ; 201: 105297, 2022 05.
Article in English | MEDLINE | ID: covidwho-1814106

ABSTRACT

Monoclonal antibody therapy is a promising option for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and a cocktail of antibodies (REGN-COV) has been administered to infected patients with a favorable outcome. However, it is necessary to continue generating novel sets of monoclonal antibodies with neutralizing activity because viral variants can emerge that show resistance to the currently utilized antibodies. Here, we isolated a new cocktail of antibodies, EV053273 and EV053286, from peripheral blood mononuclear cells derived from convalescent patients infected with wild-type SARS-CoV-2. EV053273 exerted potent antiviral activity against the Wuhan wild-type virus as well as the Alpha and Delta variants in vitro, whereas the antiviral activity of EV053286 was moderate, but it had a wide-range of suppressive activity on the wild-type virus as well as the Alpha, Beta, Delta, Kappa, Omicron BA.1, and BA.2 variants. With the combined use of EV053273 and EV053286, we observed similar inhibitory effects on viral replication as with REGN-COV in vitro. We further assessed their activity in vivo by using a mouse model infected with a recently established viral strain with adopted infectious activity in mice. Independent experiments revealed that the combined use of EV053273 and EV053286 or the single use of each monoclonal antibody efficiently blocked infection in vivo. Together with data showing that these two monoclonal antibodies could neutralize REGN-COV escape variants and the Omicron variant, our findings suggest that the EV053273 and EV053286 monoclonal antibody cocktail is a novel clinically applicable therapeutic candidate for SARS-CoV-2 infection.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 Drug Treatment , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Combinations , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL